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We consider a quantum scalar field on an arbitrary gravitational background. We obtain the
effective in-in equations for the gravitational fields using a covariant and nonlocal approximation for
the effective action proposed by Vilkovisky and collaborators. From these equations, we compute the
quantum corrections to the Newtonian potential. We find logarithmic corrections which we identify
as the running of the gravitational constants. This running coincides with the renormalization group
prediction only for minimal and conformal coupling.
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I. INTRODUCTION

The effective action (EA) is a useful tool for analyz-
ing the quantum corrections to the classical dynamics in
quantum field theory. In particular, the effective equa-
tions derived from it should be the starting point to in-
vestigate many interesting problems such as the influence
of quantum matter fields on the behavior of gravitational
fields, both in cosmology and black hole physics.

The EA is a very complicated object, even in the one-
loop approximation, and it is necessary to develop ap-
proximation techniques in order to evaluate it. A widely
used approximation is the Schwinger-DeWitt (SDW) ex-
pansion [1], which consists basically of an expansion in
derivatives of the background fields. This expansion
is useful in situations where the background fields are
slowly varying with respect to the mass of the quantum
fluctuations and for the analysis of the renormalizabil-
ity of the theory. However, many interesting physical
effects are lost in this approximation. Alternatively, one
can consider a situation where the background fields are
weak but rapidly varying. In this case, it is possible to
expand the EA in powers of the curvatures of the back-
ground fields. The resulting expansion has been recently
investigated by Vilkovisky and collaborators [2-4], and it
is in general a nonlocal object.

On the other hand, there is a simple and intuitive
way of taking into account, at least partially, the quan-
tum effects. In quantum field theory, parameters such
as masses and coupling constants are not constants but
scale-dependent quantities. This is due to vacuum po-
larization effects and the scale dependence is dictated by
the renormalization group equations. One can use this
fact to construct a “Wilsonian” effective action [5], which
is basically the classical action in which the parameters
have been replaced by their running counterparts. An ar-
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gument of this type has been recently proposed to explain
the dark matter problem [6]: because of quantum effects
the Newtonian potential should be modified according to

G(p=1)M
T

V(r)=- (1)
where G(u) is the solution to the renormalization group
equations in a renormalizable theory of gravity with R?
terms in the Lagrangian [7]. As the theory is asymptot-
ically free, G(r) is an increasing function of r, and this
may explain at least part of the “missing” mass. The
running of G may also induce interesting cosmological
and astrophysical effects [8].

It is the aim of this work to analyze the relationship
between the nonlocal approach to the EA proposed by
Vilkovisky and collaborators, the renormalization group,
and the “Wilsonian” effective action. In Ref. [9], it was
shown that the existence of nonlocal terms in the effec-
tive action is linked to the short distance behavior of the
theory and to the renormalization group. The analysis
was done in a noncovariant weak-field approximation, at
the level of the in-out effective action. Here we will ex-
tend that analysis: we will be using a covariant effective
action, we will work at the level of the in-in (see below)
semiclassical equations of motion, and we will see explic-
itly the running behavior of the gravitational constants
in the Newtonian potential. For simplicity, we will con-
sider a toy model in which we quantize a scalar field on
a classical gravitational field. We will not include the
graviton loop in our calculations.

We would like to stress that our interest here is not
to look for measurable corrections to the Newtonian po-
tential. Indeed, we know a priori that these corrections
are extremely small in the toy model considered. What
we are going to discuss is how to derive from “first prin-
ciples” (i.e., the EA) the scale dependence of G in the
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gravitational potential.

The paper is organized as follows. As a warm up, in the
next section we will obtain the running behavior of the
electric charge in QED starting from the nonlocal EA.
In Sec. III we will consider a free quantum scalar field
of mass m on an arbitrary gravitational background. We
will obtain thg nonlocal version of the effective action in
powers of —%-, and the nonlocal effective equations. In
Sec. IV we will compute the quantum corrections to the
Newtonian potential and compare the results with the
ones obtained from the “Wilsonian” approach. Section
V contains the conclusions of our work.

II. QUANTUM ELECTRODYNAMICS

Because of vacuum polarization, the electrostatic in-
teraction potential between point charges is modified to
[10]

e?(r)

4T

e? e? had 1
I '} I d —2mru 1 -
47rr[ +61r2/1 we ( +2u2>

x ———u;— ! + 0(64)]. (2)

Vint(r) =

In the short distance limit (mr <« 1) we have

e(r) = e [1 - éj‘ﬁ 1n;’"; + O(e‘*)} (3)

where r, is defined by —lnmr, = 2y + %

On the other hand, the solution to the renormalization
group equation gives the following running for the electric
charge:

e(u) = e(u) |1 - T 22 O(e‘*)] Y

As can be easily seen from Eq. (3), in the short dis-
tance limit the electrostatic interaction potential is just

the usual % in which the electric charge has been re-
placed by its running counterpart, Eq. (4), with the ad-
ditional rule that the mass scale u is replaced by the
inverse of the distance r and the mass scale reference p,
is set at r;"1. Therefore the “Wilsonian” argument gives
the correct answer for the electrostatic potential in the
short distance limit.

We will derive here these old and well-known results
using the EA formalism, since this exercise will be a use-
ful guide to the more complex calculation presented in
Secs. IIT and IV. For simplicity we will quantize only the
fermion field (with no classical component), keeping the
electromagnetic field as a classical background.

The classical action for QED in Euclidean space is
given by

S. = /d“x[%F,wF‘“’ FP(P+ie A +im)y].  (5)

In the weak field approximation, the one-loop effective
action obtained after integrating out the fermions is given

by
62 4 4,/ Al /
Seg = S¢ + 0} /d zd*z' A*(z),, (z, )
x A¥(z') + O(A%) (6)

where II,, is the usual vacuum polarization tensor for
QED. The renormalized effective action is

Se = %/d‘sz [1 - ;—ZF(D)} P* 4 0(4Y)  (7)

where

F(O) = %/01(1—t2)1n [mz—_‘%;;tf)—m} (8)

The modified Maxwell equations that derive from Eq. (7)
are

[1 - %F(D)} B FH = J¥ (9)

clas

where we included a classical source J}..
The form factor F(O) admits the following integral
representation in terms of the massive Euclidean propa-

gator (M? —0O)~1:

F(O) = %/Oldt(l — ) [m(-l-;—tz)

+/°°d ! !
. —
0 z + p? z+—<f1":;) -0

Therefore, we can regard F(J) as a two-point function
whose action on a test function f(x) is given by

(10)

FO)f(z) = /d4m'F(D)(:c,x')f(:r'). (11)

All these equations are valid in Euclidean space. To
get the Minkowski version of them, one should replace
the Euclidean propagator by the Feynman one. However,
the equations thus obtained are neither real nor causal
since the effective action gives in-out matrix elements
instead of expectation values, making the interpretation
of the equations awkward. Alternatively, one can use the
close time path (CTP) [11] formalism to construct an
in-in effective action that produces real and causal field
equations for in-in expectation values [12].

The CTP formalism involves a doubling of the degrees
of freedom and a generalization of the Feynman rules
that includes both the Feynman and Dyson propagators,
as well as the two-point Wightman functions (these func-
tions carry the information about the quantum state of
the system). However, if one is interested in the in-in
effective equations for the standard in-vacuum state, this
complication can be avoided. Indeed, in this situation it
can be shown that the in-in version of the equations is
obtained by replacing the Euclidean propagator by the
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retarded one [3] in the integral representation of the form
factor equation (10). Alternatively, the in-in form factor
can be obtained in the in-out formalism by taking twice
the real and causal part of the in-out form factor [13].
We will denote the in-in form factor thus obtained by
Fin (D).

In particular, if the test function is time independent,

Fiun(Q)f(x) = F(V*)£( x)

/dSI

because the time integral of the retarded propagator co-
incides with the Green function of the Laplacian.

In the short-distance limit m? <« —O the Euclidean
field equation reduces to

e? O
_—— —_ uv = v
{1 Ton? In ( ﬂz)] O.F JY.

One often encounters the distribution G(—%)

Hoyse IR (K f(X),
(12)

(13)

In(— Q;), which will play a central role in what follows.

The action of the in-in counterpart of G(—“ ) on a test

function f(z) is given by (see Refs. [13-15])

Cin (—%) fa)=2 / d'a'0(z® — )8 (=

1 4 af
ﬁ du /0 dQ [ln(uu) %u

18f
23v

z')*)f(z)

v=0

] (14)

where u and v are respectively the standard retarded and
advanced coordinates with origin at the point z. When
the test function is time independent, Eq. (14) reduces

to
Cin (—5—1—) fx) =G (—Z—:) 1),

as expected from Eq. (12).

We are now ready to compute the modifications to
the electrostatic potential. Taking as a classical source a
static point charge, the modified Gauss law reads

(15)

62 V2 3
The solution for the electric field is spherically symmetric
E = E(r)f and we shall find it perturbatively in powers

of e2:

E = E® + E®, )

The leading order term is the classical contribution

V-E® = es*(x) = EO(r) = (18)

and the first quantum correction is given by

1003

V.-E® = ¢* G _V_2 VvV -E® 19
1272 u? ) (19)

Therefore, we have to evaluate the action of G (—Z—:) on

the 6 function. Using Eqs. (12) and (15) we readily
obtain

V2 ., 1
G (—F) (x) = T 2mr3

where the last term gives a y-dependent correction to the
classical solution that will be absorbed into the classical
source. The quantum correction is

7'2 ea T
EP(re) 2 — gguoz I8 (E)

where 7, is an arbitrary reference radius. Integrating Egs.
(18) and (21) and multiplying by the charge e we get the
electrostatic interaction potential

—In p?83(x)

(20)

EY(r) = (21)

I/int ('I‘) = 4

_zr[l“ei ln( )+0( 4)]

From this equation the running behavior of the electric
charge follows, and it coincides with that of Eq. (3).

(22)

III. NONLOCAL EFFECTIVE EQUATIONS FOR
THE GRAVITATIONAL FIELD

Let us now consider a quantum scalar field on a gravi-
tational background. The Euclidean action for the theory
is

S = Sgrav + Smatter (23)

where

— 4 2 ny
Sgrav = /dmf[lﬁ S(R—20) + aF® + BR,,R

(24)

and
1 4 2,2 2
Smutir = 5 [ A'2V/310,80%6 + m?6* + €RF). (25)

We have included terms quadratic in the curvature since
in any case they will appear in the renormalization pro-
cedure. As we will use {-function regularization, the con-
stants G, A, a and 3 are finite (and dependent on a mass
scale p).

The effective action for the classical gravitational field
can be obtained by integrating out the quantum scalar
field. Formally the result is

_ 2
st £R] = Sgav +T
7

Se = Sgrav + %m det [
(26)

where p is an arbitrary mass scale.
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The evaluation of the above determinant in a general
background is a very complicated task. Let us denote by
R either the Riemann tensor or any of its contractions
with the metric. When the gravitational field is slowly
varying, i.e., when V*R™ « m™*2™ one can use the
SDW technique to get [16]

m? m?
= 35,2 /d4x\/— —m*In (:;2—> —m?a;(z)In <F>

+ag(z )ln( ) ]gsaj j_4(j—3)!},
(27)

where we have omitted p-independent terms which rede-
fine the classical constants. The functions a;(z) are the
coincidence limit of the SDW coefficients, given by

ao(z) =1,
ai(z) = (% — &R, (28)
(12(93) = M%R#VPGR#U‘"G — léOR R™
3 -OO0R+(3 -9 R,
an(.’l:) — Vzn'ZR + szn—4R 4ot VV'R,n71 L R™

(29)

The last line shows schematically the coincident limit of
an ().

From the SDW expansion it is easy to derive the scal-
ing of the gravitational constants. The effective action
should not depend on the scale u. As a consequence,

taking p derivatives in Eq. (26) we find
- )} (30)
u§%=~§—21;5 (G-9"-5| (31)
ugg = _66%%5’ (32)
u%% = T—:, (33)

which is the usual running for the gravitational constants.
We can use Eq. (30) to construct a “Wilsonian” gravita-
tional potential. The scaling of G is given by

m2G
G =Go (14 ™2 - pu i) (@)
Ho
so the Wilsonian potential is

V(r)=—

2
G (1-mPe-hnl). G
T ™ To
In the next section we will see if it is possible to derive
this potential from the EA.

The SDW expansion is not useful for the analysis of
the short distance behavior of the theory. As we have
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seen in the previous section, one should consider weak
but rapidly varying background fields. Assuming that
VVR > R? one may try to sum up in Eq. (27) all
the terms which contain a given power of the curvature.
This rather complicated calculation has been performed
by Avramidy in Ref. [4]. See also Refs. [3] for the massless
case. The result, up to second order in the curvature, is

= Flocal + Fnonloc (36)

o [l 3o 2
e ICHE!

Fnonloc = 397 292 /d4z\/§[ (D R+R#VF2( )R#U

where

Flocal =

+O(R3)] (37)
and

Fi(O) = %A dt [€% — 36(1 — %) + (3 — 6t° — t*)]

1 m? — (1 - tZ)D] . (38)

1
F(O) = E/o dt t“ln[ p

Note the similarities between these form factors and the
corresponding F'(0) that appears in QED [Eq. (8)].
From Eqgs. (37) and (38), one can derive the effec-
tive gravitational field equations. As we are neglect-
ing O(R?®) terms in the effective action, it makes no
sense to retain O(R?) terms in the equations of motion.
Therefore, when doing the variation of the action, it is
not necessary to take into account the g,, dependence
of the form factors. Moreover, it is possible to com-
mute the covariant derivatives acting on a curvature, i.e.,
V.V.R = V,,V,[R«}—O('Rz). After a straightforward cal-

culation we find

1 m? m?
[_gﬁ + 1gn2 € 6) <"1 HHF)] (B = 3 Rgur)

A m? 3 m? (1) (2)
’ [éﬁ t 6an? (_5 * lnfﬁ)] b+ Pl

2 Jrnonloc

- -7 “gnr = (Tp) (39)

where

H() =4V ,V,R — 4g,, O R+ O(R?),
H® =2V,V,R-g,, OR-20R,, +O(R?), (40)

and
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(Tw) = 555 [ROHEY + BROBEY].  (41)

Up to here we made no assumptions about the mass
m. In the large mass limit, m?R > VVR the SDW ex-
pansion equation (27) is recovered [up to O(R3)]. How-

1 5 1

ever, as in QED, we are interested in the opposite limit.
Let us assume that the typical scale of variation of the
gravitational field is much smaller than m™!, that is,
m?R <« VVR. In this situation, we can expand the
functions Fy(0) and F»(O) in powers of —%2. The re-
sult is

+[%—§+§2+(£2—1—12)1n (—;n':iz)] (—%-2) +o(—%2) (42)

and

23 1 O 5
Fz([l) = [—E‘d + ‘6—0111 <—/.7)] + l:—Ig

+im (_%)] <_%) +o(—%3)2. (43)

(It is possible to obtain exact expressions for F; and F in terms of elementary functions. However, we will not need
these long expressions in what follows.) Inserting the expansions, Egs. (42) and (43), into the effective equations, Eq.

(39), we get

(1w
3272 1800 18
1 m? 1 m?
+ [-gr“a'l'ﬁ(&—g (—1+IHF):| R,
e

m2¢2 O\1 m O\1
In{ —— V=g _ —— )=
+[327r2] n( m2>[:| w3842 | P\ T2 ) T

where we have set the scale u so that the cosmological
constant is zero and we included a classical source T;},‘“.

As with the SDW expansion equation (27), one can
easily derive the p dependence of the gravitational con-
stants from these modified Einstein equations. Alterna-
tively, as pointed out in Refs. [17] and [9], one should
also see the running behavior by performing the rescal-
ing g, — s~ 2g,, and looking at the large s limit. Since
O — 520 under this rescaling, the nonlocal terms pro-
portional to In 0 become relevant in this limit. From the
terms independent of m in Eq. (44) we get

1 1

A

a(9) =als=1) = (€~ 1P = llns, (45
B(s) = B(s = 1) 5671)772 Ins. (46)

It is worth noting that the scaling behavior for a and
B obtained using both methods, Egs. (31),(32) and
(45),(46), is identical. As far as the Newton constant
is concerned, we can obtain its running behavior only for
£ = 0. In this particular case, the terms proportional to
m? in Eq. (44) have a logarithmic kernel that appears in
the combination

m? O\1, . 2

Up to the order we are working (O(R?)), the basic ten-
sors Ry, — 1 Rg., H,(‘},) , and H,(ﬁ,) are related by

- ) = g (€= 97— ] m(

O 1 1 23 1 a @)
—P)]H}‘V) + [ﬂ - Eﬁ{—m + 6—0111(—;2‘) }] Hy

2 2
1 m” (4 2\ [ 1gw_ [5m° |10
- 5Rg“”> + [327r2 (ﬁ -+ )} g ~ | 576m2 | g

2)\ _ clas
(HY) —2HE) = ~Tgbe, (44
[
HY -2H® =40 (R#,, - %Rgu,,)- (48)

Therefore, it is natural to express Eq. (47) using this
relation, which thus leads to an s scaling for G,

G(s) = G(s = 1) (1 - G(s:‘:)mz In s) (49)

that is identical to the p scaling equation (34) for min-
imal coupling. For an arbitrary coupling we cannot get
the s scaling for G, since the logarithmic kernel does not
appear in the simple combination equation (47). In this
case Eq. (48) makes the identification of the scaling be-
havior ambiguous.

We shall see in the next section how to obtain the
running behavior for G from the Newtonian potential.

IV. QUANTUM CORRECTIONS TO THE
NEWTONIAN POTENTIAL

As in QED, the vacuum polarization effects contained
in (T,,) induce modifications to the Newtonian poten-
tial. We will now evaluate these corrections. To begin
with, we must obtain the in-in effective equations. To
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this end, we should express the form factors as integrals
of the massive Euclidean propagator and replace it by
the retarded propagator [see Eq. (10)]. However, when
computing the Newtonian potential we will consider only
time independent fields. Therefore, F;,(O) = F(V?2) and
the in-in equations are just the Euclidean equations with
O substituted by V2.
In the static weak-field approximation we have

[va —2(3a+ B)V3V2 -

167G 3272 | 180 3

2

1

For simplicity we shall compute only the trace h and not
the complete h,,,, since this will simplify the calculations
and will be enough for our purposes. In the limit a, 8 —
0, —h is four times the Newtonian potential.

We shall solve Eq. (51) perturbatively:

h=h® 4 pM), (52)
The classical contribution A(®) satisfies
(V2 - 072V2V2)hO = _167GM &3 (x) (53)

J

1 7
e { (f—é)<—1+ln%)+~g—3£+3£2+3
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Guv = Muv + hu.us l huu '<< 1,

R = 1vzh, (50)
2

where we assumed the Lorentz gauge conditions (h** —
%n“”h);,, = 0. For a point particle with T,, =
8289 M63(x), the trace of (linearized) Eq. (44) is

! {ig— _% + 662 — 3(€ — gfm(-%j)}vzvz

(52 - l) ln(—Z—j) }Vz]h+ O(m*) = —M&*(x). (51)

(

where 072 = 327G(3a + ). The time independent and
spherically symmetric solution is [18]

RO — @(1

= (1-e™). (54)

The first quantum correction satisfies

(V2 - 072v2v2)pM) = H(V?)R(©® (55)

where

_Gl19 8¢ 2 e 1v2af V2 22  Gm?
H(VZ)_ﬁ[Iga S T8 -3(¢-3) G( uz)]vv +
2 2
x [%(g- é)(——l-{-ln%) + 175 — 3+ 362 +3(&2 - %)G(—%)]V? (56)

We now find the solution to this equation.

To begin with, we will consider the limit or — oo, since in this

approximation it is easy to find such a solution. In this limit the classical potential becomes

h(® = 4GM<1 + 4m—253(x)>. (57)
T

Using the action of the kernel G’(—%;—) on the § function [Eq.(20)] we find

: B 3m? 1
simemr (V) o VIVIRY = A8 (x) + BV )+ CVIVA ) + | (€ - )|
9 . 907%m? 1 4502 1
+[_§F(€*é) Y e (52_3—%)];5‘ [W(ﬁ—é 2];7 (58)

where the coefficients A, B, and C depend on m, u, and £. The solution to this equation is

_24G2Mm2 (€ — 1)—ro _
™ 36 s ™

AW =
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The first, second, and third terms come from the sources
r=3,77% and r~7. The ellipsis denotes a term propor-
tional to the classical solution h(®) as well as corrections
at the origin, which are proportional to §3(x) and its
derivatives. They all come from the sources proportional
to A, B, and C in Eq. (58). We have not included them
because our quantum corrections are not accurate near
the origin. Indeed, we have derived the modified Ein-
stein equations under the assumptions VVR > R? and
m?R <« VVR. Both conditions are satisfied for the %M
potential if GM « r < m™1, so the origin r = 0 is
excluded.

From Eq. (59) we see that there are two different types
of terms in the quantum correction. The term contain-
ing the logarithm comes from the nonlocal terms propor-
tional to m?In(—0) in Eq. (44). It is qualitatively what
we expected from “Wilsonian” arguments. However, the

coeflicient %—G:r&"—z-(ﬁz — 3) is not exactly the same as
the one derived from the renormalization group equation
(34), unless £ = 0 or £ = 1, i.e., minimal or conformal
coupling. This is an important difference with respect
to the QED calculation, and shows that the “Wilsonian”
arguments are not always quantitatively correct. In ad-
dition to the running of G, we have found additional r—3
and r~® corrections.

There are no terms in h(!) that we could associate to a
running of the constants a and 8. This is not surprising
because such a running would imply terms of the form
In = 63(x), which are ill defined. Moreover, we have al-
ready pointed out that our quantum corrections are not
valid near the origin. Therefore, to see the running of
‘these constants we shall evaluate the exact solution for
h and then analyze the limit or — 0 (to this end it is
necessary to consider only the case m2? = 0).

As o is proportional to |3a + ﬂ|"%l;ﬁmck, the limit
or — 0 makes sense only for very large values of a and
B. Otherwise the limit would apply only for r smaller
than the Planck length lpjanck, Where our semiclassical
calculations are not valid. Therefore, in what follows
we will assume that a and 3 take the maximum value
compatible with experiments. This gives o of order 10~*
cm™! [18].

The calculations for the exact solution to Eq. (55) are
presented in the Appendix. We quote here the main re-
sults. In order to solve the linearized equation of motion
we have to evaluate the action of the kernel G(—%:—) on

the Yukawa potential

V2 e~ T 0.2 e~ or
o(a) 5 =m(5)

or

—or

€ [

Ei(—or) —

Ei(or) (60)

r

where Ei(z) is the exponential integral function. With
the help of this formula we get the exact solution for A(1)
(see the Appendix) and the limit o7 — 0 can be taken.
The solution reads

R(D — EC_;M

— (- 3)*|rIn(or) + (v = Pr| + O(c").

(61)

It is worth noting that the logarithmic term is exactly
the one expected from the renormalization group scaling
of 3a + B. Indeed, for small or the classical potential
becomes, up to a constant,

h(® ~ _2MGo?r. (62)

Substituting in the above equation Go? = [327(3a +
B)]~! by its running counterpart [Egs.(31) and (32)] with
n= %, one finds

2 4
RO ~ M(g —1)%1n r (63)

T To

which coincides with the logarithmic term of result Eq.
(61).

V. CONCLUSIONS

Let us summarize the new results contained in this
work. We have obtained the in-in effective equations for
an arbitrary gravitational field that include the back re-
action produced by a quantum scalar field of mass m.
The equations are nonlocal, covariant and valid under
the assumption VVR > R2. In the limit m? > —0O,
the equations become local and reproduce the Schwinger-
DeWitt expansion. In the opposite limit, m? <« —0OJ, the
presence of nonlocal kernels of the form ln(—%) made it
possible to read the scaling behavior of the gravitational
constants « and 3 under the rescaling of the metric. This
scaling coincides with the renormalization group predic-
tions. This is also the case for the s scaling of the New-
ton constant, but only for minimal coupling (this fact has
been pointed out in Ref. [9]).

Using the in-in equations we computed the quantum
corrections to the Newtonian potential. This is our main
result. We have found two types of corrections: short
range corrections that decay faster than 1 and corrections
proportional to %ln > Which we recognized as the scal-
ing of the Newton constant. This scaling coincides with
the renormalization group prediction only for minimal
and conformal coupling. For other couplings, while the
1 dependence of G is proportional to (£ — %), the scaling
in the Newtonian potential is proportional to 6(£2 — 2L.).

36
Therefore, the “Wilsonian” approach is strictly valid only

forf:Oand{:%.

One of the main motivations behind the present work
was the remark made in Ref. [6] about the possibility of
explaining the dark matter problem through the scale de-
pendence of G. In that paper, the running assumed was
the one dictated by the renormalization group equations,
in a theory of gravity containing R? terms. From our
results we see that, in the toy model we have considered,
the renormalization group behavior is qualitatively but
not quantitatively reproduced at the level of the New-
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tonian potential. However, at present we cannot draw
definite conclusions about the R? theory, since we have
not included the graviton loop in our calculations. We
hope to clarify this issue in the future.

Finally, we would like to point out that the covariant
effective equations we have found in Sec. III can also be
used to analyze the effect of scaling in cosmological situ-
ations. For a Robertson-Walker metric with scale factor
a(t), we expect local terms of the form Ina?(t) to be con-
tained in the kernel In(— %) These local terms may have
interesting cosmological and astrophysical consequences,
like the generation of a primordial magnetic field during
inflation [19]. Work in this direction is in progress.

Note added. While we were writing this article we re-
ceived a paper by Donoghue [20], where the author calcu-
lates the quantum corrections to the Newtonian potential
due to the graviton loop. His results are qualitatively the
same as ours in the case m? = 0. This is to be expected,
since the physical degrees of freedom of the graviton can
be treated as massless scalar fields.
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APPENDIX

In this Appendix we calculate the first quantum cor-
rection h(1) that solves the linearized equation of motion,
Eq. (55), for the case m? = 0. The evaluation of the ac-

tion of the kernel G(~%;—) on the Yukawa potential is
accomplished using Egs. (12) and (15):

V2 e °T
o(-52)%
Bk . s k2 e-—or'

_ 3,./ ik (x—x') =
- [ [ et (Ga)

2 —or or or
=ln ("'_2) € ¢ Ei(—or) - =—Fi(or) (A1)
y?; T T T

where Ei(z) is the exponential integral function. Taking
this expression into account, the equation of motion reads

(v2 - U”ZVZVZ) R =" fi(x) (A2)

i=1

where

19 56 3¢
x) = 64G*Mo? | —— — > + =
fi(x) 7 [1440 24 4

2
+§(5 - (1;) 1n;ﬂ]63<x),

[ 3 1\’ 1
f2(x) = 64G*Mo? | Tor (f - g) jl;j,
e

| 5760w = 96m 16w
2 —

3 1 or

PPN A L
167 6 nl|or

r 2 or
fa(x) = 64G*Mo* 3 (g - 3) ] er Ei(—o7),

fa(x) = 64G*Mo*

| 327 6
- 2
3 1 e 7" .
fs(x) = 64G*Mo* L—ﬁ(ﬁwg)} " Ei(or).
(A3)
Being a linear equation, we propose a time-

independent, spherically symmetric solution of the form

5
RO (x) = 3R () (A4)
1=1
where each hgl)(r) is the solution corresponding to the
source f;(x).
Let us denote by G(x — x’) the Green function of the
operator V2 — ¢72V2V? [obviously G(x) is proportional
to h(®(x)]. The solutions hl(-l)(x) are then given by

h{ (x) = /d3z’ G(x = x) fi(x'). (A5)

The source f;(x) is proportional to §°(x). Therefore,
h(ll) is proportional to h(® and can be absorbed into the

classical parameters.
For ¢ = 2 we obtain

R (r)

sin(ort)

24 coprorie— 12 [ a2t
ﬂrGﬂﬁT@ 6 0 &a1+ﬁ)

S oMot [ asletmi(-2)
—e *Ei(z)] (A6)

where the last equality can be proved by taking r deriva-
tives on both sides and using properties of Ei(z). Having
now the exact first quantum correction, one can analyze
the limit or — 0. Using the series expansion for the ex-
ponential integral function [21], the quantum correction
reduces to

20 4
A = 6G" Mo~ 71:40 (€-13)? [r In(or) + (v — %)r] + 0(0®).
(A7)
The other sources can be treated in a similar way.
However, as they are all proportional to o* [see Eq.

(A3)], the new solutions hgl), i = 3,4,5 are of order o®°.
Therefore,

R (x) = A (x) + O(0). (A8)
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